RIM3γ and RIM4γ are key regulators of neuronal arborization.
نویسندگان
چکیده
The large isoforms of the Rab3 interacting molecule (RIM) family, RIM1α/β and RIM2α/β, have been shown to be centrally involved in mediating presynaptic active zone function. The RIM protein family contains two additional small isoforms, RIM3γ and RIM4γ, which are composed only of the RIM-specific C-terminal C2B domain and varying N-terminal sequences and whose function remains to be elucidated. Here, we report that both, RIM3γ and RIM4γ, play an essential role for the development of neuronal arborization and of dendritic spines independent of synaptic function. γ-RIM knock-down in rat primary neuronal cultures and in vivo resulted in a drastic reduction in the complexity of neuronal arborization, affecting both axonal and dendritic outgrowth, independent of the time point of γ-RIM downregulation during dendrite development. Rescue experiments revealed that the phenotype is caused by a function common to both γ-RIMs. These findings indicate that γ-RIMs are involved in cell biological functions distinct from the regulation of synaptic vesicle exocytosis and play a role in the molecular mechanisms controlling the establishment of dendritic complexity and axonal outgrowth.
منابع مشابه
Neuronal Development: SAD Kinases Make Happy Axons
The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development - arborization in the target field.
متن کاملRegulation of dendritic arborization by BCR Rac1 GTPase-activating protein, a substrate of PTPRT.
Dendritic arborization is important for neuronal development as well as the formation of neural circuits. Rac1 is a member of the Rho GTPase family that serve as regulators of neuronal development. Breakpoint cluster region protein (BCR) is a Rac1 GTPase-activating protein that is abundantly expressed in the central nervous system. Here, we show that BCR plays a key role in neuronal development...
متن کاملGenome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites.
Dendrite arborization patterns are critical determinants of neuronal function. To explore the basis of transcriptional regulation in dendrite pattern formation, we used RNA interference (RNAi) to screen 730 transcriptional regulators and identified 78 genes involved in patterning the stereotyped dendritic arbors of class I da neurons in Drosophila. Most of these transcriptional regulators affec...
متن کاملNeuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملRab Interacting Molecules 2 and 3 Directly Interact with the Pore-Forming CaV1.3 Ca2+ Channel Subunit and Promote Its Membrane Expression
Rab interacting molecules (RIMs) are multi-domain proteins that positively regulate the number of Ca2+ channels at the presynaptic active zone (AZ). Several molecular mechanisms have been demonstrated for RIM-binding to components of the presynaptic Ca2+ channel complex, the key signaling element at the AZ. Here, we report an interaction of the C2B domain of RIM2α and RIM3γ with the C-terminus ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 2 شماره
صفحات -
تاریخ انتشار 2013